Cliquer pour ajouter une information temporelle

Long-time homogenization of the wave equation.

2052 Vues
Antoine Gloria
mercredi, 1 février 2017

Document Téléchargé

Faculté des sciences - Section de mathématiques
In this talk I'll present recent results on the long-time homogenization of the wave equation in random media. To this aim I'll introduce the notion of Taylor-Bloch waves, at the basis of an approximate spectral theory at low frequencies. For periodic and quasiperiodic coefficients, this allows one to define a family of higher-order homogenized operators which describe the behavior of the solution on arbitrarily large time frames (and encompasses the standard dispersive approximation). I will then turn to the random case, give a short review on quantitative results in the elliptic case, and address the long-time homogenization in this setting. If time allows I'll give the counterpart of these results for the Schrödinger equation with random potential.
This is joint work with Antoine Benoit (ULB).
Please sign in to add a comment.
Collection

Workshop on Multiscale methods for stochastic dynamics

1

Stochastic parameterizations of deterministic dynamical systems: Theory, applications and challenges

Georg Gottwald
mardi 31 janvier 2017
2

Ergodic Stochastic Differential Equations and Sampling: A numerical analysis perspective

Kostas Zygalakis
mardi 31 janvier 2017
3

Weak convergence for semi-linear SPDEs.

Sonja Cox
mardi 31 janvier 2017
4

On stochastic numerical methods for the approximative pricing of financial derivatives.

Arnulf Jentzen
mardi 31 janvier 2017
5

Mean-square stability analysis of SPDE approximations.

Annika Lang
mercredi 1 février 2017
6

Adaptive timestepping for S(P)DEs to control growth.

Gabriel Lord
mercredi 1 février 2017
7

Noise-induced transitions and mean field limits for multiscale diffusions.

Greg Pavliotis
mercredi 1 février 2017
8

Accelerated dynamics and transition state theory.

Tony Lelièvre
mercredi 1 février 2017
9

Long-time homogenization of the wave equation.

Antoine Gloria
mercredi 1 février 2017