Cliquer pour ajouter une information temporelle

Mean-square stability analysis of SPDE approximations.

1528 Vues
Annika Lang
mercredi, 1 février 2017

Document Téléchargé

Faculté des sciences - Section de mathématiques
Mean-square stability analysis of the zero solution of SDE approximations is well established. In this talk the theory is generalized to martingale-driven SPDE. Since the generalization of the finite-dimensional theory is not suitable, mean-square stability of SPDE is characterized in terms of operators. Applications to Galerkin finite element methods in combination with backward Euler, Crank-Nicolson, and forward Euler approximations of the semigroup and Euler-Maruyama and Milstein schemes for the stochastic integral are presented.
This is joint work with Andreas Petersson and Andreas Thalhammer.
Please sign in to add a comment.
Collection

Workshop on Multiscale methods for stochastic dynamics

1

Stochastic parameterizations of deterministic dynamical systems: Theory, applications and challenges

Georg Gottwald
mardi 31 janvier 2017
2

Ergodic Stochastic Differential Equations and Sampling: A numerical analysis perspective

Kostas Zygalakis
mardi 31 janvier 2017
3

Weak convergence for semi-linear SPDEs.

Sonja Cox
mardi 31 janvier 2017
4

On stochastic numerical methods for the approximative pricing of financial derivatives.

Arnulf Jentzen
mardi 31 janvier 2017
5

Mean-square stability analysis of SPDE approximations.

Annika Lang
mercredi 1 février 2017
6

Adaptive timestepping for S(P)DEs to control growth.

Gabriel Lord
mercredi 1 février 2017
7

Noise-induced transitions and mean field limits for multiscale diffusions.

Greg Pavliotis
mercredi 1 février 2017
8

Accelerated dynamics and transition state theory.

Tony Lelièvre
mercredi 1 février 2017
9

Long-time homogenization of the wave equation.

Antoine Gloria
mercredi 1 février 2017