Cliquer pour ajouter une information
temporelle
Mean-square stability analysis of SPDE approximations.
1528
Vues
mercredi, 1 février 2017
Document Téléchargé
Faculté des sciences -
Section de mathématiques
Mean-square stability analysis of the zero solution of SDE approximations is well established. In this talk the theory is generalized to martingale-driven SPDE. Since the generalization of the finite-dimensional theory is not suitable, mean-square stability of SPDE is characterized in terms of operators. Applications to Galerkin finite element methods in combination with backward Euler, Crank-Nicolson, and forward Euler approximations of the semigroup and Euler-Maruyama and Milstein schemes for the stochastic integral are presented.
This is joint work with Andreas Petersson and Andreas Thalhammer.
This is joint work with Andreas Petersson and Andreas Thalhammer.
Collection
Workshop on Multiscale methods for stochastic dynamics
Stochastic parameterizations of deterministic dynamical systems: Theory, applications and challenges
Georg Gottwald
mardi 31 janvier 2017
Ergodic Stochastic Differential Equations and Sampling: A numerical analysis perspective
Kostas Zygalakis
mardi 31 janvier 2017
On stochastic numerical methods for the approximative pricing of financial derivatives.
Arnulf Jentzen
mardi 31 janvier 2017
Noise-induced transitions and mean field limits for multiscale diffusions.
Greg Pavliotis
mercredi 1 février 2017