Cliquer pour ajouter une information
temporelle
Adaptive timestepping for S(P)DEs to control growth.
1926
Vues
mercredi, 1 février 2017
Document Téléchargé
Faculté des sciences -
Section de mathématiques
We introduce a class of adaptive timestepping strategies for stochastic differential equations such as those arising from the semi-discretization of SPDEs with non-Lipschitz drift coefficients. These strategies work by controlling potential unbounded growth in solutions of a numerical scheme. We prove that the Euler-Maruyama scheme with an adaptive timestepping strategy in this class is strongly convergent and present preliminary results on a semi-implicit scheme and an extension to non-Lipschitz noise terms. We test this alternative to taming on some examples. This is joint work with Conall Kelly.
Collection
Workshop on Multiscale methods for stochastic dynamics
Stochastic parameterizations of deterministic dynamical systems: Theory, applications and challenges
Georg Gottwald
mardi 31 janvier 2017
Ergodic Stochastic Differential Equations and Sampling: A numerical analysis perspective
Kostas Zygalakis
mardi 31 janvier 2017
On stochastic numerical methods for the approximative pricing of financial derivatives.
Arnulf Jentzen
mardi 31 janvier 2017
Noise-induced transitions and mean field limits for multiscale diffusions.
Greg Pavliotis
mercredi 1 février 2017