Identifiez-vous pour ajouter une information temporelle
0:00

How can we know anything about the origin of life? english version

vendredi 11 nov 2022
Faculté des sciences - Unités directement rattachées à la faculté des sciences



Imagine we really could build a time machine and go back to the origin of life on Earth. Where should we go and what should we look for? Few researchers could agree about that. Some would visit hot springs on land, others would embark on a voyage to deep sea hydrothermal vents, and a few would look to the heavens, seeking delivery of organic molecules, or even whole cells, from outer space.

Let’s say that we did happen to go to the right place and found some green slime. Is it alive? Is it on the path towards life? It would be very hard to say unless we had a good idea exactly what we were looking for: we would need a specific hypothesis about the origin of life.

We don’t have a time machine, so we’ll never know what actually happened. But we can construct a detailed hypothesis, linking each step from the first stirrings of prebiotic chemistry to the emergence of genes and information. We can test each proposed step in the lab, to see whether or not it seems to be plausible. We can build an intellectual framework which shows how a sterile, inorganic planet could spring to life.

In this talk I will use life as a guide to its own origins. I will show that the most important properties of life are energy flow, the synthesis of new organic matter, and genetic information. All three have interesting quirks that might give insights into how they first arose. Energy flow takes place across the flimsy membranes that surround cells, giving them an electrical charge. Organic synthesis uses this electrical charge to drive the difficult reaction between carbon dioxide and hydrogen, to form the carbon skeletons that make up living matter. And the genetic code conceals deeply enigmatic patterns that suggest there were once direct interactions between amino acids (the building blocks of proteins) and the first genes (short strings of genetic information called RNA). Taken together, these quirks point to a specific environment which holds particular promise for the emergence of life: deep sea hydrothermal vents. I will outline some of our own active research on how life might have started in this environment and show how each step could be joined up to give an exciting and testable hypothesis for origin of life on Earth.

20e Colloque Wright pour la science 1Le thermostat naturel de la planète et son délicat équilibre / How rock...Dessibourg Olivier
01:31:49
2Le thermostat naturel de la planète et son délicat équilibreDessibourg Olivier
01:31:45
3How rock weathering sets Earth’s thermostatBonadonna Costanza
01:31:48
4Les volcans et la gestion des risques / Volcanoes, their eruption and risk...Bonadonna Costanza
01:32:01
5Les volcans et la gestion des risquesBonadonna Costanza
01:32:04
6Volcanoes, their eruption and risk managementBonadonna Costanza
01:31:59
7La turbulence des océans révélée par de nouvelles techniques d’observation /...Dessibourg Olivier
01:27:57
8La turbulence des océans révélée par de nouvelles techniques d’observation Dessibourg Olivier
01:27:57
9The turbulent ocean: technological frontiers, new paradigms, and the emerging Arctic...Dessibourg Olivier
01:27:57
10Les liens entre les microbes océaniques, le climat et la santé / Tiny critters,...Wolf Jean-Pierre
01:26:56
11Les liens entre les microbes océaniques, le climat et la santéWolf Jean-Pierre
01:26:55
12Tiny critters, huge impacts: Ocean microbes, climate, and health Wolf Jean-Pierre
01:26:56
13Questionnements sur l’origine de la vie / How can we know anything about the...Dessibourg Olivier
01:37:34
14Questionnements sur l’origine de la vie Dessibourg Olivier
01:37:34
15 How can we know anything about the origin of life? Dessibourg Olivier
01:37:35